Все формулы мира. Как математика объясняет законы природы

 

Издательство «Альпина нон-фикшн» выпустило книгу астрофизика, доктора физико-математических наук Сергея Попова «Все формулы мира. Как математика объясняет законы природы».

Галилео Галилею принадлежат слова: «Книга природы написана на языке математики». Спустя почти четыре столетия мы не устаем удивляться тому, что математические методы прекрасно подходят для описания нашего мира. Еще большее изумление вызывают естественно-научные открытия, сделанные на основе математического анализа уравнений. Создание любой сложной конструкции — от дорожной развязки до квантового компьютера — сопряжено с математическими расчетами. Для полноценного понимания действия гравитации или квантовых явлений нам также не обойтись без математики. Но это кажется таким сложным и запутанным! Как перестать бояться формул и полюбить математику? Почему она так эффективна в естественных науках? Есть ли этому предел, или, наоборот, для более глубокого понимания природы придется создавать математические конструкции, уже не укладывающиеся в голове человека? Все эти вопросы затрагиваются на страницах книги. На многие из них невозможно найти окончательные однозначные ответы. Но мы продолжаем обсуждать их и пытаемся понять, как устроен этот мир. Для этого понадобится преодолеть разделение на «две культуры» — «гуманитариев» и «естественников». Попробуем сделать еще один шаг в этом направлении.

Предлагаем прочитать отрывок из книги.

 

Можно взять научные статьи по одной тематике, например небесной механике, и посмотреть, как они менялись на протяжении веков. В «Математических началах» Ньютона формул на удивление мало, там больше слов и рисунков. Оттолкнувшись от его идей, несколько поколений европейских ученых активно развивали эту область. Поскольку в течение долгого времени не появлялось существенно новых подходов, ученые демонстрировали всё бóльшую и бóльшую изощренность в рамках одной и той же парадигмы. Это приводило к росту визуальной сложности используемого аппарата, особенно с точки зрения непрофессионала. Можно взять в качестве примера сложные небесно-механические расчеты середины XIX века, например, книгу Шарля-Эжена Делоне о движении Луны. Фактически вся книга — лишь пара формул. Вроде бы сложно и накручено, но по сути это только ньютоновская механика. Эдакий аналог стимпанка: паровоз, похожий на звездолет.

Развитие какой-нибудь области теоретической физики может приводить и к компактификации записи. Собственно, ученые специально тратят значительные усилия, чтобы упростить себе жизнь, придумав новые методы записи уравнений или расчетов. Введение лагранжианов и гамильтонианов позволило сделать многие рассуждения и операции в классической механике существенно проще, прозрачнее. Изобретение фейнмановских диаграмм облегчило жизнь физикам-теоретикам в области изучения элементарных частиц. Добившись более рационального способа манипуляций с уравнениями в одной области, можно позволить себе потратить освободившиеся интеллектуальные ресурсы на интеграцию разных физических процессов в едином подходе к описанию какого-нибудь феномена.

При развитии моделей возможно их усложнение путем добавления эффектов из других областей, т. е. происходит некий синтез разных частей физики в приложении к одному явлению. Скажем, на первом этапе, изучая поведение плазмы в астрофизическом источнике, пренебрегли магнитными полями, ограничившись гидродинамикой и ньютоновской механикой. А затем добавили магнитные поля, учли конечную проводимость плазмы. Потом стали учитывать и реакции в плазме. Модель становится всё детальнее, и число уравнений растет или же увеличивается их длина.

Хорошим примером возрастания сложности моделей могут служить расчеты вспышек сверхновых. Напомним, что выделяют два основных типа сверхновых: коллапс ядра массивной звезды (типы Ib, Ic и II) и термоядерный взрыв сверхкритического белого карлика (тип Ia). Чтобы не усложнять изложение, рассмотрим только сверхновые, связанные с коллапсом.

Он начинается, когда давление в ядре не может больше противостоять гравитации. Данная стадия наступает, если в звездных недрах исчерпаны возможности для дальнейших термоядерных реакций, так что обычно коллапсирует железное ядро, окруженное оболочками с преобладанием других элементов (кремния, кислорода и т. д.), — так называемая луковичная структура звезды. Если быстрое сжатие не остановится[1], то образуется черная дыра, и никакого мощного энерговыделения не будет.

Однако чаще всего масса ядра для этого недостаточна, а потому коллапс резко прекращается. Это происходит, когда плотность вещества в сжимающемся объеме достигает плотности атомного ядра. Образуется компактный плотный объект — протонейтронная звезда, а снаружи на него падают внешние слои звездного ядра. В результате за короткое время — менее секунды — выделяется колоссальная кинетическая энергия схлопывающегося ядра и падающих на него оболочек. Это и приводит в конечном счете к взрыву сверхновой, если образовавшаяся ударная волна сможет пробиться через окружающее вещество наружу.

Основная часть энергии уносится нейтрино. Заметная доля перейдет в кинетическую энергию сбрасываемого вещества. Наконец, какая-то небольшая часть будет испущена в виде электромагнитного излучения. И этой «какой-то небольшой части» хватит, чтобы вспышка превзошла по блеску все звезды не слишком крупной галактики.

Физика этого события сложна и многогранна. До сих пор мы не можем с уверенностью сказать, что хорошо понимаем процесс взрыва сверхновой. Несмотря на полвека исследований, до сих пор нет достаточно надежной и полной трехмерной компьютерной модели, в которой удалось бы получить разлет вещества без дополнительных предположений. Не хватает совсем чуть-чуть энергии ударной волны, и идет напряженная работа в попытках раскрыть эту загадку.

На протяжении десятилетий модели сверхновых постоянно совершенствовались. Постепенно в расчеты добавлялись всё новые и новые ингредиенты. Первые расчеты начали проводить Стирлинг Колгейт (Stirling Colgate) и его соавторы во второй половине 1960-х гг. Вспышки сверхновых наблюдались с давних времен, но лишь в 1930-е гг. начали вырисовываться основные черты этого явления с наблюдательной точки зрения. К началу 1960-х стало ясно, что коллапс (возможно, сопровождаемый выделением энергии в термоядерных реакциях) способен обеспечить нужную энергетику.

Модель Колгейта и Уайта (Richard White), опубликованная в 1966 г., включала в себя гидродинамику, базовые предположения, касающиеся ядерной физики, и простейшие оценки переноса нейтрино (замечу, что Колгейт, как и многие первые исследователи сверхновых, в том числе и в нашей стране, до того как пришел в астрофизику, занимался разработкой термоядерного оружия; причина проста: у этих задач много общего в смысле физики процессов). Несмотря на то, что статья была настоящим прорывом и оказала большое влияние на развитие сценариев взрывов сверхновых (это, в частности, выражается и в том, что сейчас на нее есть несколько сотен ссылок из других, более поздних, научных публикаций), модель была слишком простой (отмечу, что при этом в статье мы обнаруживаем более сотни только пронумерованных формул!), чтобы дать адекватное описание феномена.

В ходе дальнейших исследований многочисленные авторы, входящие в разные исследовательские группы по всему миру (изучение сверхновых — очень интернациональная область астрофизики), развивали и совершенствовали подходы к моделированию взрыва. Так, группа Геннадия Бисноватого-Когана в Москве сделала ставку на учет процессов, связанных с вращением и сильными магнитными полями, образующимися в результате сжатия ядра. Энергия вращения и магнитного поля растет при коллапсе за счет гравитационной потенциальной энергии. Важно, что значительную ее часть можно затем передать оболочке, а именно это нужно, чтобы получить взрыв. Однако физика резко усложняется, если к и без того непростой гидродинамике и переносу нейтрино добавлять магнитную гидродинамику, да еще с быстрым вращением, что требует в идеале трехмерных расчетов (первые модели сверхновых были, по сути, одномерными, т. е. рассматривался сферически-симметричный случай), а они не только технически сложнее с точки зрения алгоритмизации и программирования, но и требуют гораздо более мощных компьютеров для вычислений.

Важным этапом в развитии моделей сверхновых стал детальный учет эффектов общей теории относительности. Они, безусловно, становятся важны в задаче о коллапсе, так как в центре взрыва находится компактный массивный объект. Оказалось, что эффекты ОТО помогают взрыву. Это было хорошей новостью. Плохая заключалась в том, что их недостаточно, чтобы решить все проблемы.

Модели продолжали оттачиваться. Авторы начали детально рассчитывать эффекты, связанные с турбулентностью в коллапсирующем веществе. Всё более детально учитывалась физика нейтрино. Например, стали принимать во внимание нейтринные осцилляции, а также процессы с участием этих частиц в сильном магнитном поле (уточню, что такие эффекты сильных полей принципиально отличаются от учета магнитного поля в смысле динамики плазмы или передачи энергии оболочке). Всё более детально учитывались эффекты, связанные с ядерной физикой. А это не только многочисленные реакции, но и использование уравнений состояния, всё лучше описывающих поведение вещества. Уравнение состояния показывает, как давление зависит от плотности, т. е., в частности, определяет, как вещество сопротивляется сжатию. Мы относительно неплохо понимаем, как устроено уравнение состояния вплоть до ядерных плотностей. Но внутри протонейтронной звезды плотность уже начинает превосходить это значение — там «живут драконы». У нас нет экспериментальных данных или надежной теории для описания процессов в сверхплотном веществе, тем более при такой большой температуре, как при коллапсе ядра звезды. Поэтому тут открывается простор для усилий теоретиков. В 2015 г. группе Ханса-Томаса Янки (Hans-Thomas Janka) в Германии удалось путем учета вклада так называемых странных (s-) кварков получить взрыв сверхновой в трехмерном расчете. Однако и это не стало финальной точкой — физика кварков сама по себе достаточно сложна, а в расчетах пока были использованы лишь довольно простые варианты их описания.

Сейчас физика сверхновых — это в первую очередь сложные компьютерные модели. Теория в этой области исследований прошла большой путь от простых аналитических оценок энергии взрыва до трехмерных расчетов с использованием самых мощных суперкомпьютеров на Земле (и даже на них расчет каждого варианта занимает месяцы, а надо ведь еще варьировать параметры моделей!). Сможем ли мы с помощью дифференциальных уравнений и традиционных численных методов добиться полного понимания? Или понадобится какой-то эволюционный скачок в попытке воспроизвести сверхновую в компьютере?



[1] В самой центральной части ядра звезды коллапс на крайне короткое время останавливается при достижении ядерной плотности даже в случае формирования черной дыры. Но затем очень быстро натекающее из внешних слоев ядра вещество довольно скоро приводит к окончательному коллапсу.

Обсудите с коллегами

14:00

В Дманиси нашли останки диких собак, живших рядом с людьми 1,8 млн лет назад

PRO SCIENCE
12:00

Лабораторные кошки окажутся полезнее мышей для медицинской генетики

PRO SCIENCE
10:00

Возраст найденных в Индии наскальных рисунков составляет не менее 20 тысяч лет

PRO SCIENCE
01.08

Луна. Наблюдая за самым знакомым и невероятным небесным объектом

PRO SCIENCE
31.07

ОГПУ-НКГБ в борьбе со спецслужбами Японии

PRO SCIENCE
30.07

Индустрия джаза в Америке. XXI век

PRO SCIENCE
Эусоциальность: Люди, муравьи, голые землекопы и другие общественные животные