Все формулы мира. Как математика объясняет законы природы

 

Издательство «Альпина нон-фикшн» выпустило книгу астрофизика, доктора физико-математических наук Сергея Попова «Все формулы мира. Как математика объясняет законы природы».

Галилео Галилею принадлежат слова: «Книга природы написана на языке математики». Спустя почти четыре столетия мы не устаем удивляться тому, что математические методы прекрасно подходят для описания нашего мира. Еще большее изумление вызывают естественно-научные открытия, сделанные на основе математического анализа уравнений. Создание любой сложной конструкции — от дорожной развязки до квантового компьютера — сопряжено с математическими расчетами. Для полноценного понимания действия гравитации или квантовых явлений нам также не обойтись без математики. Но это кажется таким сложным и запутанным! Как перестать бояться формул и полюбить математику? Почему она так эффективна в естественных науках? Есть ли этому предел, или, наоборот, для более глубокого понимания природы придется создавать математические конструкции, уже не укладывающиеся в голове человека? Все эти вопросы затрагиваются на страницах книги. На многие из них невозможно найти окончательные однозначные ответы. Но мы продолжаем обсуждать их и пытаемся понять, как устроен этот мир. Для этого понадобится преодолеть разделение на «две культуры» — «гуманитариев» и «естественников». Попробуем сделать еще один шаг в этом направлении.

Предлагаем прочитать отрывок из книги.

 

Можно взять научные статьи по одной тематике, например небесной механике, и посмотреть, как они менялись на протяжении веков. В «Математических началах» Ньютона формул на удивление мало, там больше слов и рисунков. Оттолкнувшись от его идей, несколько поколений европейских ученых активно развивали эту область. Поскольку в течение долгого времени не появлялось существенно новых подходов, ученые демонстрировали всё бóльшую и бóльшую изощренность в рамках одной и той же парадигмы. Это приводило к росту визуальной сложности используемого аппарата, особенно с точки зрения непрофессионала. Можно взять в качестве примера сложные небесно-механические расчеты середины XIX века, например, книгу Шарля-Эжена Делоне о движении Луны. Фактически вся книга — лишь пара формул. Вроде бы сложно и накручено, но по сути это только ньютоновская механика. Эдакий аналог стимпанка: паровоз, похожий на звездолет.

Развитие какой-нибудь области теоретической физики может приводить и к компактификации записи. Собственно, ученые специально тратят значительные усилия, чтобы упростить себе жизнь, придумав новые методы записи уравнений или расчетов. Введение лагранжианов и гамильтонианов позволило сделать многие рассуждения и операции в классической механике существенно проще, прозрачнее. Изобретение фейнмановских диаграмм облегчило жизнь физикам-теоретикам в области изучения элементарных частиц. Добившись более рационального способа манипуляций с уравнениями в одной области, можно позволить себе потратить освободившиеся интеллектуальные ресурсы на интеграцию разных физических процессов в едином подходе к описанию какого-нибудь феномена.

При развитии моделей возможно их усложнение путем добавления эффектов из других областей, т. е. происходит некий синтез разных частей физики в приложении к одному явлению. Скажем, на первом этапе, изучая поведение плазмы в астрофизическом источнике, пренебрегли магнитными полями, ограничившись гидродинамикой и ньютоновской механикой. А затем добавили магнитные поля, учли конечную проводимость плазмы. Потом стали учитывать и реакции в плазме. Модель становится всё детальнее, и число уравнений растет или же увеличивается их длина.

Хорошим примером возрастания сложности моделей могут служить расчеты вспышек сверхновых. Напомним, что выделяют два основных типа сверхновых: коллапс ядра массивной звезды (типы Ib, Ic и II) и термоядерный взрыв сверхкритического белого карлика (тип Ia). Чтобы не усложнять изложение, рассмотрим только сверхновые, связанные с коллапсом.

Он начинается, когда давление в ядре не может больше противостоять гравитации. Данная стадия наступает, если в звездных недрах исчерпаны возможности для дальнейших термоядерных реакций, так что обычно коллапсирует железное ядро, окруженное оболочками с преобладанием других элементов (кремния, кислорода и т. д.), — так называемая луковичная структура звезды. Если быстрое сжатие не остановится[1], то образуется черная дыра, и никакого мощного энерговыделения не будет.

Однако чаще всего масса ядра для этого недостаточна, а потому коллапс резко прекращается. Это происходит, когда плотность вещества в сжимающемся объеме достигает плотности атомного ядра. Образуется компактный плотный объект — протонейтронная звезда, а снаружи на него падают внешние слои звездного ядра. В результате за короткое время — менее секунды — выделяется колоссальная кинетическая энергия схлопывающегося ядра и падающих на него оболочек. Это и приводит в конечном счете к взрыву сверхновой, если образовавшаяся ударная волна сможет пробиться через окружающее вещество наружу.

Основная часть энергии уносится нейтрино. Заметная доля перейдет в кинетическую энергию сбрасываемого вещества. Наконец, какая-то небольшая часть будет испущена в виде электромагнитного излучения. И этой «какой-то небольшой части» хватит, чтобы вспышка превзошла по блеску все звезды не слишком крупной галактики.

Физика этого события сложна и многогранна. До сих пор мы не можем с уверенностью сказать, что хорошо понимаем процесс взрыва сверхновой. Несмотря на полвека исследований, до сих пор нет достаточно надежной и полной трехмерной компьютерной модели, в которой удалось бы получить разлет вещества без дополнительных предположений. Не хватает совсем чуть-чуть энергии ударной волны, и идет напряженная работа в попытках раскрыть эту загадку.

На протяжении десятилетий модели сверхновых постоянно совершенствовались. Постепенно в расчеты добавлялись всё новые и новые ингредиенты. Первые расчеты начали проводить Стирлинг Колгейт (Stirling Colgate) и его соавторы во второй половине 1960-х гг. Вспышки сверхновых наблюдались с давних времен, но лишь в 1930-е гг. начали вырисовываться основные черты этого явления с наблюдательной точки зрения. К началу 1960-х стало ясно, что коллапс (возможно, сопровождаемый выделением энергии в термоядерных реакциях) способен обеспечить нужную энергетику.

Модель Колгейта и Уайта (Richard White), опубликованная в 1966 г., включала в себя гидродинамику, базовые предположения, касающиеся ядерной физики, и простейшие оценки переноса нейтрино (замечу, что Колгейт, как и многие первые исследователи сверхновых, в том числе и в нашей стране, до того как пришел в астрофизику, занимался разработкой термоядерного оружия; причина проста: у этих задач много общего в смысле физики процессов). Несмотря на то, что статья была настоящим прорывом и оказала большое влияние на развитие сценариев взрывов сверхновых (это, в частности, выражается и в том, что сейчас на нее есть несколько сотен ссылок из других, более поздних, научных публикаций), модель была слишком простой (отмечу, что при этом в статье мы обнаруживаем более сотни только пронумерованных формул!), чтобы дать адекватное описание феномена.

В ходе дальнейших исследований многочисленные авторы, входящие в разные исследовательские группы по всему миру (изучение сверхновых — очень интернациональная область астрофизики), развивали и совершенствовали подходы к моделированию взрыва. Так, группа Геннадия Бисноватого-Когана в Москве сделала ставку на учет процессов, связанных с вращением и сильными магнитными полями, образующимися в результате сжатия ядра. Энергия вращения и магнитного поля растет при коллапсе за счет гравитационной потенциальной энергии. Важно, что значительную ее часть можно затем передать оболочке, а именно это нужно, чтобы получить взрыв. Однако физика резко усложняется, если к и без того непростой гидродинамике и переносу нейтрино добавлять магнитную гидродинамику, да еще с быстрым вращением, что требует в идеале трехмерных расчетов (первые модели сверхновых были, по сути, одномерными, т. е. рассматривался сферически-симметричный случай), а они не только технически сложнее с точки зрения алгоритмизации и программирования, но и требуют гораздо более мощных компьютеров для вычислений.

Важным этапом в развитии моделей сверхновых стал детальный учет эффектов общей теории относительности. Они, безусловно, становятся важны в задаче о коллапсе, так как в центре взрыва находится компактный массивный объект. Оказалось, что эффекты ОТО помогают взрыву. Это было хорошей новостью. Плохая заключалась в том, что их недостаточно, чтобы решить все проблемы.

Модели продолжали оттачиваться. Авторы начали детально рассчитывать эффекты, связанные с турбулентностью в коллапсирующем веществе. Всё более детально учитывалась физика нейтрино. Например, стали принимать во внимание нейтринные осцилляции, а также процессы с участием этих частиц в сильном магнитном поле (уточню, что такие эффекты сильных полей принципиально отличаются от учета магнитного поля в смысле динамики плазмы или передачи энергии оболочке). Всё более детально учитывались эффекты, связанные с ядерной физикой. А это не только многочисленные реакции, но и использование уравнений состояния, всё лучше описывающих поведение вещества. Уравнение состояния показывает, как давление зависит от плотности, т. е., в частности, определяет, как вещество сопротивляется сжатию. Мы относительно неплохо понимаем, как устроено уравнение состояния вплоть до ядерных плотностей. Но внутри протонейтронной звезды плотность уже начинает превосходить это значение — там «живут драконы». У нас нет экспериментальных данных или надежной теории для описания процессов в сверхплотном веществе, тем более при такой большой температуре, как при коллапсе ядра звезды. Поэтому тут открывается простор для усилий теоретиков. В 2015 г. группе Ханса-Томаса Янки (Hans-Thomas Janka) в Германии удалось путем учета вклада так называемых странных (s-) кварков получить взрыв сверхновой в трехмерном расчете. Однако и это не стало финальной точкой — физика кварков сама по себе достаточно сложна, а в расчетах пока были использованы лишь довольно простые варианты их описания.

Сейчас физика сверхновых — это в первую очередь сложные компьютерные модели. Теория в этой области исследований прошла большой путь от простых аналитических оценок энергии взрыва до трехмерных расчетов с использованием самых мощных суперкомпьютеров на Земле (и даже на них расчет каждого варианта занимает месяцы, а надо ведь еще варьировать параметры моделей!). Сможем ли мы с помощью дифференциальных уравнений и традиционных численных методов добиться полного понимания? Или понадобится какой-то эволюционный скачок в попытке воспроизвести сверхновую в компьютере?



[1] В самой центральной части ядра звезды коллапс на крайне короткое время останавливается при достижении ядерной плотности даже в случае формирования черной дыры. Но затем очень быстро натекающее из внешних слоев ядра вещество довольно скоро приводит к окончательному коллапсу.

Обсудите с коллегами

14:00

Эра динозавров. Жизнь в доисторические времена

PRO SCIENCE
10.04

Необыкновенные способности почки

PRO SCIENCE
09.04

Путешествия на другую сторону света

PRO SCIENCE
09.04

Генетики раскрыли тайну гроба шведского епископа

PRO SCIENCE
09.04

Три коричневых карлика вращаются с рекордной скоростью

PRO SCIENCE
09.04

Обнаружен неизвестный ранее портрет работы Гейнсборо и установлена личность изображенного на нем человека

PRO SCIENCE
Эусоциальность: Люди, муравьи, голые землекопы и другие общественные животные